Scientific Data Exchange: X-ray Tomography Implementation

Version 0.0.5

February 22, 2012

Table 1: Version history

Version	Date	Notes	
v000	November 15, 2011	FdC: First version of the Data Exchange file format for full field x-ray imaging and tomography based on the definition from https://confluence.aps.anl.gov/.	
v001	December 23, 2011	FdC: Added sample and instrument class to meet APS (2-BM, 13-BM, 32-ID) and SLS (Tomcat) meta data requirements and definitions.	
v002	January 5, 2012	FdC: Merged with the Coherent X-ray Imaging Data Bank file format CXI from http://cxidb.org/cxi.html. Converted the document using the same diagram definition set by Filipe Maia in "CXI file format" and modified to fit the Data Exchange definitions.	
v003	January 15, 2012	NS: Added Provenance Class	
∨004	February 6, 2012	FdC: Added measurement class and moved sample and instrument under it to meet ESRF request to allow for multiple tomography measurements to be stored in the same file (relevant for nano CT raster scans and similar).	
v005	February 19, 2012	FdC: Clean up and moved to version control.	
∨006	February 22, 2012	FdC: Changed section 4 title and explained more clearly that the 3D array dimension order (rotation, ccd y, ccd x) is a default but not mandatory. Different dimension orders are allowed defining the attribute axis.	

Contents

1		oducti		1
	1.1	Goals		1
2		Desig	n of 2FXi	1
	2.1	HDF5		2
		2.1.1	Data types	2
	2.2	2FXi.		2
3	2FX	i by ex	xample	3
	3.1	•	am color code	3
	3.2	_	imal 2FXi file	4
	3.3		imal 2FXi file for tomography	4
	3.4		cal tomography raw data 2FXi file	4
		3.4.1	Sample Temperature	6
		3.4.2	X-ray Energy	7
		3.4.3	Detector-sample Distance	8
		3.4.4	Series of tomographic measurements	8
4	Dat	a Evch	nange entries reference	10
•	4.1		vel (root)	10
	4.2	-	nge	11
	4.3		rement	13
	4.4		le	13
	1.1	4.4.1	Experiment identifier	15
		4.4.2	Experimenter identifier	16
	4.5		ment	17
	1.0	4.5.1	Source	18
		4.5.2	Shutter	19
		4.5.3	Attenuator	19
		4.5.4	Monochromator	19
		4.5.5		21
		4.5.6		22
		4.5.7		25
		4.5.8		26
		4.5.9	0	27
				28
				29
			Dark Setup	30

		4.5.13 White Setup	Ĺ
		4.5.14 Rotation Setup	2
	4.6	Geometry	3
		4.6.1 Translation	
		4.6.2 Orientation	1
5	Pro	venance 35	5
	5.1	Process	3
	5.2	Process description	7
	5.3	APS 2-BM Process descriptions	
		5.3.1 Gridftp	7
		5.3.2 Reconstruction	
		5.3.3 Algorithm	
	5.4	RingRemoval	
6	Cod	le examples 41	L
	6.1	Creating a minimal 2FXi file	L
	6.2	Creating a minimal 2FXi file for tomography 41	L
	6.3	Creating a typical 2FXi file for tomography 41	L
A	App	pendix 42	2
	A.1	Default units for 2FXi entries	2
		A.1.1 Angles	2
		A.1.2 Dates	2
	A.2	Geometry	3
		A.2.1 Coordinate System	3
		A 2.2 The local coordinate system of objects 45	3

1 Introduction

The data file format for full field x-ray imaging (2FXi) is defined as the Scientific Data Exchange implementation to store all experimental data collected during full field x-ray imaging and tomography experiments as well as to capture infrastructure meta data and data provenance by recording how the data were acquired, processed and transferred.

The 2FXi file format complies with the Data Exchange file format defined at http://www.aps.anl.gov/DataExchange, adding, as required by the Data Exchange definition, the technique-specific groups for full field x-ray imaging and tomography.

The Data Exchange file format is implemented using Hierarchical Data Format 5 (HDF5), which offers platform-independent binary data storage with optional compression, hierarchical data ordering, and self-describing tags.

The aim and the scope of Data Exchange is very similar to the Coherent X-ray Imaging Data Bank file format (CXI), so whenever possible we will use the same conventions, name tags and reference system. This document is using the same diagram definition set by Filipe R. N. C. Maia in "CXI file format" (http://cxidb.org/cxi.html) and has been modified to fit the Data Exchange definitions.

1.1 Goals

The goal of Data Exchange implementation for x-ray full field imaging is to provide simplicity and extensibility in defining data, meta data and provenance information for x-ray imaging, micro and nano tomography. To achieve this goal 2FXi follows the same requirements of the CXI file format, i.e. simplicity, flexibility and extensibility.

2 The Design of 2FXi

The core principle of Data Exchange is that it must be simple enough that it is not necessary to use a support library beyond core HDF5. The simplicity of Data Exchange read and write is achieved using basic HDF5 calls, making it easy for anyone to either look at an example file using h5dump or HDFView, or to look at example code in language X, and then create their own read and write routines in language Y.

The simplest Data Exchange file provides information and exchange

definition sufficient to share a multidimensional data array as simply as possible.

Additionally Data Exchange provides optional, but clearly defined, metadata components to the base definition and also provides technique-specific groups for tomography, spectro-microscopy, and fluorescence mapping applications. These involve separate HDF5 groups.

In this document we define and extend the Data Exchange basic components to store all experimental data collected during full field x-ray imaging and tomography experiments as well as all data generated during the analysis of the experimental data.

2.1 HDF5

The HDF5 format is the basis of 2FXi format. 2FXi, like CXI, is not really a completely new file format but simply a set of rules designed to create HDF5 files with a common structure and to allow a uniform and consistent interpretation of such files.

HDF5 was chosen as the basis because it is a widely used high performance scientific data format which many programs can already, at least partially, read and write. It also brings with it the almost automatic fulfillment of the Data Exchange requirements, i.e. simplicity, flexibility and extensibility. HDF5 version 1.8 or higher is required as previous versions don't support all features required by 2FXi.

2.1.1 Data types

The 2FXi uses the same CXI convention for data types as defined at http://cxidb.org/cxi.html using HDF5 native datatypes. The data should be saved in the same format as it was created/acquired. For example CCD images acquired as 16 bit integers should be saved using the H5T_NATIVE_SHORT HDF5 type. In this way all cross platform biglittle endian issues reading and writing files are eliminated.

2.2 2FXi

While HDF5 gives great flexibility in data storage, straightforward file readability and exchange requires adhering to an agreed-upon naming and organizational convention. To achieve this goal, 2FXi adopts a layered approach by defining a set of *mandatory* and optional fields.

Below are the general rules used in 2FXi files:

- A data exchange file must always contain the scalar strings *implements* and *version* in the root level of the HDF5 file; *implements* is a colon separated list that shows which components are present in the file; *version* identifies the data exchange version in use.
- Each data field has a unit defined using the units attribute; units is not mandatory, if omitted the default unit is defined in Appendix A.1.

All groups listed in the *implements* string attribute are placed in the HDF5 file at the same level as *implements* and *version*. In a 2FXi file the only *mandatory* implements is *exchange*.

• exchange contains one or more arrays representing the most basic version of the data.

Additional optional groups can be added in the root level of the HDF5 file to store measurement and provenance information. To be compatible with 2FXi these optional group names should be defined in the string attribute of *implements*; measurement contains information about the sample and the instrument while provenance contains information about the status of each processing step. The definition of the *mandatory* and optional top level entries can be found at 4.1

3 2FXi by example

3.1 Diagram color code

The diagrams of the 2FXi file follow the same color conventions used by the CXI and reported in Figure 1

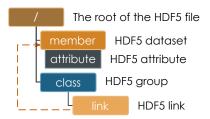


Figure 1: Explanation of the color code used in the diagrams

3.2 A minimal 2FXi file

Figures 2 shows a diagram a minimal 2FXi file to store a single projection image. As no units are specified the data is assumed to be in "counts" with the axes (x, y) in pixels.

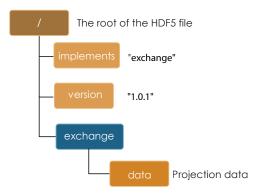


Figure 2: Diagram of a minimal 2FXi file for a single image.

3.3 A minimal 2FXi file for tomography

A tomographic data set consists of a series of projections, dark and white field images. The dark and white fields must have the same projection image dimensions and can be collected at any time before, after or during the projection data collection. The angular position of the tomographic rotation axis is used to keep track of when the dark and white images are collected. A minimal tomographic data set consists of projection images, dark and white images. 2FXi saves them in three 3D arrays as shown in Figure 3 and 4 with the natural HDF5 order of the a multidimensional array (rotation axis, ccd y, ccd x), i.e. with the fastest changing dimension being the last dimension, and the slowest changing dimension being the first dimension. As no units are specified the data is assumed to be in "counts" with the axes (x, y) in pixels.

3.4 A typical tomography raw data 2FXi file

A series of tomographic data sets are typically collected changing the instrument status (energy, detector or optics position) or changing the sample status (position, environment etc.). Figure 5, 6 and 7 show the content of 2FXi files changing the sample temperature, the x-ray source energy and detector-sample distance.

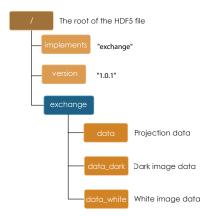


Figure 3: Diagram of a minimal 2FXi file for a single tomographic data set including raw projections, dark and white fields. Since the positions of the rotation axis for each projection, dark and white images are not specified is assumed that the raw projections are taken at equally spaced angular intervals between 0 and 180 degree, with white and dark field collected at the same time before or after the projection data collection.

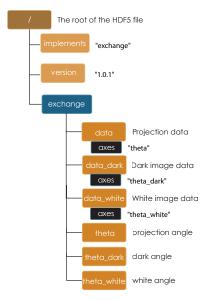


Figure 4: Diagram of a minimal 2FXi file for a single tomographic data set including raw projections, dark and white fields. In this case the attribute axes indicates the presence of theta vectors containing the positions of the rotation axis for each projection, dark and white images.

3.4.1 Sample Temperature

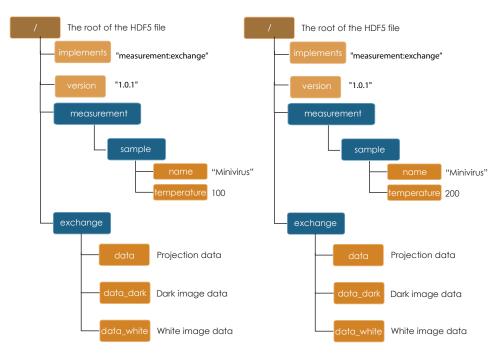


Figure 5: Diagram of two tomographic data sets taken at two different sample temperatures (100 and 200 K). To store the temperature in °C is necessary to add the attribute units = "celsius" to the temperature tag.

3.4.2 X-ray Energy

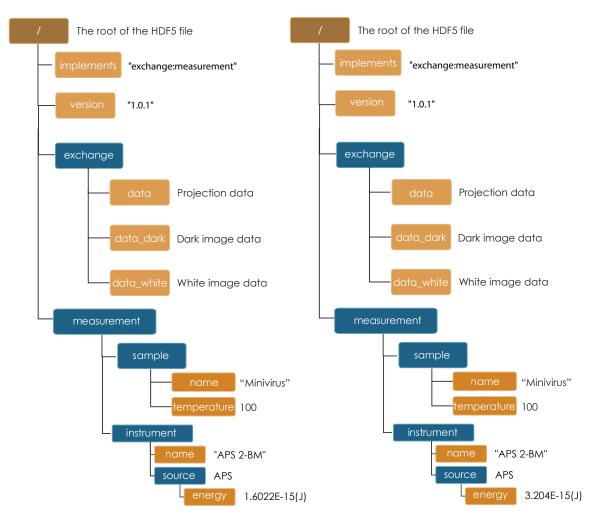


Figure 6: Diagram of two tomographic data sets taken at two different energy (10 and 20 keV). To store the temperature in keV is necessary to add the attribute units = "keV" to the energy tag.

The root of the HDF5 file The root of the HDF5 file "exchange:measurement" "exchange:measurement" "1.0.1" "1.0.1" exchange Projection data Projection data Dark image data Dark image data White image data White image data Ш Hi 1 + 1measurement 111 Ш Ш Ш 1μ name "Minivirus" "Minivirus" perature 100 temperature 100 "APS 2-BM" "APS 2-BM" Ш energy 1.6022E-15(J) (G) 1.6022E-15(J) PCO.Edge PCO.Edge 111 5e-3 (m) 9e-3 (m) Projection raw data 4). Projection raw data 41 Dark image data

3.4.3 Detector-sample Distance

Figure 7: Diagram of two tomographic data sets collected with two different detector-sample distances (5 and 9 mm).

White image data

3.4.4 Series of tomographic measurements

white_data

A series of tomographic measurements, when relevant, can be stored in the same 2FXi file appending $_N$ to the measurement tag. For example in nano tomography experiments the detector field of view is often

White image data

smaller than the sample. To collect a complete tomographic data set is necessary to raster the sample across the field of view moving its x and y location. Figure 8 shows a 2FXi file from a nano tomography experiment when the sample rasters through the filed of view. The details of how the exchange arrays for a raster nano tomography scan are generated will be discussed in more details in Section 5.

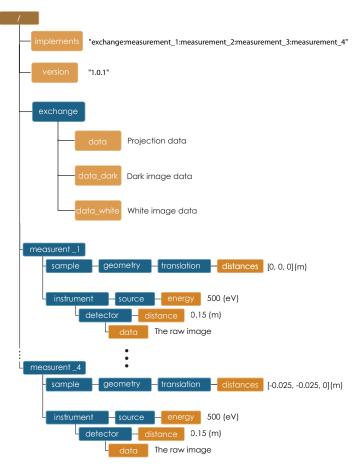


Figure 8: Diagram of a 2FXi file with 4 tomographic data sets from a nano tomography experiment.

Data Exchange entries reference

4.1 Top level (root)

This node represents the top level of the HDF5 file and holds some general information about the file.

Table 2: 2FXi top level entries

Member	Туре	Example
implements	string	"exchange:measurement:provenance"
version	string	"1.0.1"
exchange $_{-}N$	Exchange class	
measurement_ N	Measurement class	
provenance	Provenance class	

implements - A colon separated list that shows which components are present in the file. The only *mandatory* component is *exchange*. A more general 2FXi file for tomography will also contain measurement and provenance information, if so these will be declared in implements as "exchange: measurement: provenance"

version - 2FXi format version.

*exchange*_*N* - The measurements recorded in this file.

 $measurement_N$ - Each measurement made on the sample.

provenance - The Provenance class describes all process steps that have been applied to the data.

4.2 Exchange

This class is a general placeholder for the most important information in a 2FXi file and contains one or more arrays representing the most basic version of the data, such as a tomographic projections, dark and white fields. It is *mandatory* that there is at least one data class in each exchange class. Most data analysis and plotting programs will primarily focus in this class.

Member Type Example title string "raw absorption tomo" data 3D array see 4 for attribributes vector of dims 2 see 5 for attribributes) Χ vector of dims 1 see 5 for attribributes) theta vector of dims 0 of data see 5 for attribributes) data_dark 3D array see 4 for attribributes theta_dark vector for dims 0 of data_dark see 5 for attribributes) data_white see 4 for attribributes 3D array theta_white vector for dims 0 of data_white see 5 for attribributes)

Table 3: exchange class members

title - This is the data title.

data - A tomographic data set consists of projection, dark and white images. Data is a three-dimensional array containing the raw projection images. As defined in the HDF5 standard, all multidimensional arrays must be stored with the fastest changing dimension being the last dimension, and the slowest changing dimension being the first dimension. 2FXi follows this convention saving the projection data as a 3D array with dimension order: rotation, ccd y, ccd x. Data attributes, if used, are defined in Table 4, if data does not have any attributes defined then the unit is assumed to be in "counts", the axes (x, y) are in pixels and the projections are assumed to be collected at equally spaced angular interval between 0 and 180 degree.

data_dark, data_white - The dark field and white fields must have the same dimensions of the projection images and can be collected at any time before, after or during the projection data collection. Data_dark and data_white attributes, if used, are defined in Table 4, if data_dark and data_white don't have any attributes defined then the corresponding data_dark and data_white are assumed to be collected all at the beginning or at the end of the projection data collection.

x, y - X and y are vectors storing the dimension scale for the second and third data array dimension. If x, y are not defined the second and third dimensions of the data array are assumed to be in pixels.

theta_dark, theta_white - Theta is a vector storing the projection angular positions with attributes defined in Table 5. If theta is not defined the projections are assumed to be collected at equally spaced angular interval between 0 and 180 degree. The dark field and white fields can be collected at any time before, after or during the projection data. Theta_dark, and theta_white, with attributes defined in Table 5, store the position of the tomographic rotation axis when the corresponding dark and white images are collected. If theta_dark and theta_white are missing the corresponding data_dark and data_white are assumed to be collected all at the beginning or at the end of the projection data collection.

Table 4: data attributes

Member	Туре	Example	
description	string	"transmission"	
units	string	"counts"	
axes	string	"theta:y:x"	

Table 5: x, y, theta, theta_dark, theta_white attribute

Member	Туре	Example
units	string	"µm", "degree"

4.3 Measurement

This class holds sample and instrument information.

Table 6: 2FXi top level entries

Member	Туре	Example
sample	Sample class	
instrument	Instrument class	

sample - The sample measured.

instrument - The instrument used to collect this data.

4.4 Sample

This class holds basic information about the sample, its geometry, properties, the sample owner (user) and sample proposal information.

Table 7: Sample class members

Member	Туре	Example
name	string	"cells sample 1"
description	string	"malaria cells"
preparation_date	string ISO 8601	"2011 07 15T15 10Z"
chemical_formula	string abbr. CIF format	"(Cd 2+)3, 2(H2 O)"
mass	float	0.25
concentration	float	0.4
environment	string	"air"
temperature	float	25.4
pressure	float	101325
position	string	"2D" APS robot coord.
geometry	Geometry class	
ids	Experiment identifier class	
experimenter	Experimenter identifier class	

name - Descriptive name of the sample.

description - Description of the sample.

preparation_date - Date and time the sample was prepared.

chemical_formula - Sample chemical formula using the CIF format.

mass - Mass of the sample.

```
concentration - Mass/volume.
environment - Sample environment.
temperature - Sample temperature.
pressure - Sample pressure.
position - Sample position in the sample changer/robot.
geometry - Sample center of mass position and orientation.
ids - Facility experiment identifiers.
experimenter - Experimenter identifiers.
```

4.4.1 Experiment identifier

Table 8: Experiment identifier class

Member	Type	Example
proposal	string	"1234"
activity	string	"9876"
safety	string	"9876"

proposal - Proposal reference number. For the APS this is the General User Proposal number.

activity - Proposal scheduler id. For the APS this is the beamline scheduler activity id.

safety - Safety reference document. For the APS this is the Experiment Safety Approval Form number.

4.4.2 Experimenter identifier

Table 9: Experimenter identifier class

Member	Туре	Example
name	string	"John Doe"
role	string	"Project PI"
affiliation	string	"University of California, Berkeley"
address	string	"EPS UC Berkeley CA 94720 4767 USA"
phone	string	"+1 123 456 0000"
email	string	"johndoe@berkeley.edu"
facility_user_id	string	"a123456"

name - User name.

role - User role.

affiliation - User affiliation.

address - User address.

phone - User phone number.

email - User e-mail address

facility_user_id - User badge number

4.5 Instrument

The instrument class stores all relevant beamline components status at the beginning of the tomographic measurement.

Table 10: Instrument class members

Member	Туре	Example
name	string	"XSD/2-BM"
source	Source class	
$shutter_{-}N$	Shutter class	
attenuator $_{-}N$	Attenuator class	
monochromator	Monochromator class	
interferometer	Interferometer class	
$detector_{ extsf{-}}N$	Detector class	
sample_stack	Sample Stack class	
acquisition	Acquisition class	

name - Name of the instrument.

source - The source used by the instrument.

shutterN - The shutter(s) used by the instrument.

attenuator N - The attenuators that are part of the instrument.

monochromator - The monochromator used by the instrument.

 $\operatorname{detector}_{N}$ - The detectors that compose the instrument.

4.5.1 Source

Class describing the light source being used.

Table 11: Source class members

Member	Туре	Example
name	string	"APS"
beamline	string	"2-BM"
distance	float	-48.5
current	float	0.094
energy	float	4.807e-15
pulse_energy	float	1.602e-15
pulse_width	float	15e-11

name - Name of the facility.

beamline - Name of the beamline.

distance - The source distance (m) from the sample.

current - Electron beam current (A).

energy - Characteristic photon energy of the source (J). For an APS bending magnet this is 30 keV or 4.807e-15 J.

pulse_energy - Sum of the energy of all the photons in the pulse (J).

pulse_width - Duration of the pulse (s).

4.5.2 Shutter

Class describing the light source being used.

Table 12: Source class members

Member	Туре	Example
name	string	"Front End Shut- ter 1"
distance	float	-48.5

name - Shutter name.

distance - Shutter distance (m) from the sample.

4.5.3 Attenuator

This class describes a beamline attenuator(s) used during data collection. If more than one attenuators are used they will be named as attenuator_1, attenuator_2 etc.

Table 13: Attenuator class members

Member	Туре	Example
distance	float	-35.7
thickness	float	1e-3
attenuator_transmission	float	unit-less
type	string	Al

distance - The Attenuator distance (m) from the sample. Negative distances represent beamline components that are before the sample while positive distances represent components that are after the sample. In this case the filter is located 35.7 m upstream of the sample.

thickness - Thickness of attenuator along beam direction.

attenuator_transmission - The nominal amount of the beam that gets through (transmitted intensity)/(incident intensity).

type - Type or composition of attenuator.

4.5.4 Monochromator

Define a monochromator used in the instrument.

Table 14: Monochromator class members

Member	Туре	Example
type	string	"Multilayer"
energy	float	1.602e-15
energy_error	float	1.602e-17
mono_stripe	string	"Ru/C"

type - Multilayer type.

energy - Peak of the spectrum that the monochromator selects. Since units is not defined this field is in J and corresponds to 10 keV.

energy_error - Standard deviation of the spectrum that the monochromator selects. Since units is not defined this field is in J.

mono_stripe - Type of multilayer coating or crystal.

4.5.5 Interferometer

This class stores the interferometer parameters.

Table 15: Interferometer class members

Member	Туре	Example
start_angle	float	0.000
grid_start	float	0.000
grid_end	float	2.4e-6
grid_position_for_scan	float	1.3e-6
number_of_grid_steps	integer	8

 $start_angle$ - Interferometer start angle.

grid_start - Interferometer grid start angle.

grid_end - Interferometer grid end angle.

grid_position_for_scan - Interferometer grid position for scan.

number_of_grid_steps - Number of grid steps.

4.5.6 Detector

This class holds information about the detector used during the experiment. If more than one detector are used they will be all listed as detector_*N*. In full field imaging the detector consists of a CCD camera, microscope objective and a scintillator screen. Raw data recorded by a detector as well as its position and geometry should be stored in this class.

Table 16: Detector class members

Member	Туре	Example
manufacturer	string	"CooKe Corporation"
model	string	"pco dimax"
serial_number	string	"1234XW2"
bit_depth	integer	12
x_pixel_size	float	6.7e-6
y_pixel_size	float	6.7e-6
x_dimension	integer	2048
y_dimension	integer	2048
x_binning	integer	1
y_binning	integer	1
operating_temperature	float	270
exposure_time	float	1.7e-3
frame_rate	integer	2
distance	float	5.7e-3
data	3D array	variable (see Tab. 4 for attrib.)
X	vector of dims 2	variable (see Tab. 5 for attrib.)
У	vector of dims 1	variable (see Tab. 5 for attrib.)
theta	vector of dims 0 of data	variable (see Tab. 5 for attrib.)
data_dark	3D array	variable (see Tab. 4 for attrib.)
theta_dark	vector for dims 0 of data_dark	variable (see Tab. 5 for attrib.)
data ₋ white	3D array	variable (see Tab. 4 for attrib.)
theta_white	vector for dims 0 of data_white	variable (see Tab. 5 for attrib.)
roi	roi class	
objective_ N	objective class	
scintillator	scintillator class	
counts_per_joule	float	unitless
basis_vectors	float array	length
corner_position	3 floats	length

manufacturer - The detector manufacturer.

model - The detector model.

serial_number - The detector serial number .

bit_depth - The detector bit depth.

x_pixel_size, y_pixel_size - Physical detector pixel size (m).

x_dimension, y_dimension - The detector horiz./vertical dimension.

x_binning, y_binning - If the data are collected binning the detector x_binning and y_binning store the binning factor.

operating_temperature - The detector operating temperature (K).

exposure_time - The detector exposure time (s).

frame_rate - The detector frame rate (fps). This parameter is set for fly scan

distance - The detector distance from the sample.

data - A tomographic data set consists of projection, dark and white images. Data is a three-dimensional array containing the raw projection images. As defined in the HDF5 standard, all multidimensional arrays must be stored with the fastest changing dimension being the last dimension, and the slowest changing dimension being the first dimension. 2FXi follows this convention saving the projection data as a 3D array with dimension order: rotation, ccd y, ccd x. Data attributes, if used, are defined in Table 4, if data does not have any attributes defined then the unit is assumed to be in "counts", the axes (x, y) are in pixels and the projections are assumed to be collected at equally spaced angular interval between 0 and 180 degree.

data_dark, data_white - The dark field and white fields must have the same dimensions of the projection images and can be collected at any time before, after or during the projection data collection. Data_dark and data_white attributes, if used, are defined in Table 4, if data_dark and data_white don't have any attributes defined then the corresponding data_dark and data_white are assumed to be collected all at the beginning or at the end of the projection data collection.

x, y - X and y are vectors storing the dimension scale for the second and third data array dimension. If x, y are not defined the second and third dimensions of the data array are assumed to be in pixels.

theta, theta_dark, theta_white - Theta is a vector storing the projection angular positions with attributes defined in Table 5. If theta is not defined the projections are assumed to be collected at equally spaced angular interval between 0 and 180 degree. The dark field and white

fields can be collected at any time before, after or during the projection data. Theta_dark, and theta_white, with attributes defined in Table 5, store the position of the tomographic rotation axis when the corresponding dark and white images are collected. If theta_dark and theta_white are missing the corresponding data_dark and data_white are assumed to be collected all at the beginning or at the end of the projection data collection.

roi - The detector selected Region Of Interest (ROI).

objective_N - List of the visible light objectives mounted between the detector and the scintillator screen.

basis_vectors - A matrix with the basis vectors of the detector data. For more details see ??.

counts_per_joule - Number of counts recorded per each joule of energy received by the detector. The number of incident photons can then be calculated by:

$$number \ of \ photons = \frac{source \ energy \times data \ counts}{counts \ per \ joule}$$

corner_position - The x, y and z coordinates of the corner of the first data element. For more details see ??.

geometry_1 - Position and orientation of the center of mass of the detector. This should only be specified for non pixel detectors. For pixel detectors use basis_vectors and corner_position.

4.5.7 ROI

Class describing the region of interest (ROI) of the image actually collected, if smaller than the full CCD.

Table 17: roi class members

Member	Туре	Example
name	string	"APS"
x1	integer	256
yl	integer	256
x2	integer	1792
y2	integer	1792

- x1 Left pixel position.
- y1 Top pixel position.
- x2 Right pixel position.
- y2 Bottom pixel position.

4.5.8 Objective

Class describing the microscope objective lenses used.

Table 18: objective class members

Member	Туре	Example
manufacturer	string	"Zeiss"
model	string	"Axioplan"
magnification	float	5
na	float	0.8

manufacturer - Lens manufacturer.

model - Lens model.

magnification - Lens specified magnification.

na - The numerical aperture (N.A.) is a measure of the light-gathering characteristics of the lens.

4.5.9 Scintillator

Class describing the visible light scintillator coupled to the CCD camera objective lens.

Table 19: scintillator class members

Member	Туре	Example
manufacturer	string	"Crytur"
serial_number	string	"12"
name	string	"Yag polished"
type	string	"Yag on Yag"
scintillating_thickness	float	5e-6
substrate_thickness	float	1e-4

manufacturer - Scintillator Manufacturer.

serial_number - Scintillator serial number.

name - Scintillator name.

scintillating_thickness - Scintillator thickness.

substrate_thickness - Scintillator substrate thickness.

4.5.10 Sample Stack

Class storing the positions of the stack of stages located under the sample before the tomographic data collection start. The stack defined in Table 20 is used at the APS and the SLS and consists of an x-y-z stack and a pitch-roll (rotation_x and rotation_y) located under the rotary stage, plus and x-z (xx and zz) located above the rotary stage.

Table 20: Sample stack class members

Member	Туре	Example
x_coordinate	float	6.6E-3
y₋coordinate	float	4.3E-3
z_coordinate	float	5.5E-3
xx_coordinate	float	-8.1E-3
zz_coordinate	float	1.6E-3
rotation_x	float	0.00
rotation_z	float	0.00

x_coordinate, y_coordinate, z_coordinate - Locations of the x-y-z stages located under the rotary stage at the beginning of the scan.

xx_coordinate, zz_coordinate - Locations of the x and z stages located above the rotary stage.

rotation_x, rotation_z - Locations of pitch and roll stages located under the rotary stage

4.5.11 Acquisition

A tomographic data set consists of a series of projections, dark and white field images. The dark field and white fields can be collected at any time before, after or during the projection data collection. The acquisition class stores scan parameter values associated with the tomographic data collection.

Table 21: acquisition class members

Member	Туре	Example
type	string	"stop and go"
start_date	string ISO 8601	"2011 07 15T15 10Z"
end₋date	string ISO 8601	"2011 07 15T25 10Z"
number_of_projections	integer	1441
dark_setup	Dark Setup Class	
white_setup	White Setup Class	
rotation_setup	Rotation Setup Class	

type - Tomographic data collection type: stop and go, fly scan etc.

start_date - Tomographic data collection start.

end_date - Tomographic data collection end.

number_of_projections - Number of tomographic projections.

dark_setup - Dark field data collection setup.

white_setup - White field data collection setup.

rotation_setup - Rotation stage setup.

4.5.12 Dark Setup

This class stores the parameters used to collect the dark field images

Table 22: Dark Setup class members

Member	Туре	Example	
frequency	int	0	
period	int	0	
number_pre	int	1	
number_post	int	1	

frequency - The frequency of dark image collection during rotation. Specified as the number of regular projections to take prior to taking a number of dark images given by period. For example, a value of 10 means to take 10 projections, and then one or more dark images.

period - The number of dark images to collect during rotation at intervals specified by frequency.

number_pre - Number of dark images collected pre-rotation.

number_post - Number of dark images collected post-rotation.

4.5.13 White Setup

This class stores the parameters used to collect the white field images.

Table 23: White Setup class members

Member	Туре	Example
frequency	int	0
period	int	0
number_pre	int	1
number_post	int	1
in_out_axis	string	"X"
in	float	0
out	float	3e-3

frequency - The frequency of dark image collection during rotation. Specified as the number of regular projections to take prior to taking a number of dark images given by period. For example, a value of 10 means to take 10 projections, and then one or more dark images.

period - The number of dark images to collect during rotation at intervals specified by frequency.

number_pre - Number of dark images collected pre-rotation.

number_post - Number of dark images collected post-rotation.

in_out_axis - Indicates which axis is used to move the sample out of the field of view.

in - Position of the in_out_axis when the sample is in the data collection position.

out - Position of the in_out_axis when the sample is outside of the field of view.

4.5.14 Rotation Setup

This class stores the rotary stage parameters.

Table 24: Rotation Setup class members

Member	Туре	Example
start_angle	float	0.000
end_angle	float	180.000
angular_step	float	0.125
angular_speed	float	0.2

start_angle - Rotary stage position at the beginning of the scan.

end_angle - Rotary stage position at the end of the scan.

angular_step - Rotary stage step size (used if data are collected in a stop-go mode.

angular_speed - Rotary stage speed.

4.6 Geometry

This class holds the general position and orientation of a component.

Table 25: Geometry class members

Member	Туре	Quantity
translation	Translation class	
orientation	Orientation class	

orientation - The rotation of the object with respect to the coordinate system.

translation - The position of the object with respect to the origin.

Only one orientation and one translation is permitted in each geometry class.

The position of the origin of the object should be explicitly defined for each object. If it is not defined it should be assumed to be the center of the object.

4.6.1 Translation

This is the description for the general spatial location of a component it is used by the Geometry class

Table 26: Translation class members

Member	Туре	Example
distances	3 floats	0,0.001,0

distances - The x, y and z components of the translation of the origin of the object relative to the origin of the global coordinate system (the place where the X-ray beam meets the sample when the sample is first aligned in the beam). If distances does not have the attribute units set then the units are in meters (see table 35)

4.6.2 Orientation

This is the description for a general orientation of a component - it is used by the Geometry class.

Table 27: Orientation class members

Member	Туре	Quantity
value	6 floats	unitless

value - Dot products between the local and the global unit vectors.

The orientation information is stored as direction cosines. The direction cosines will be between the local coordinate directions and the global coordinate directions. The unit vectors in both the local and global coordinates are right-handed and orthonormal.

Calling the local unit vectors (x', y', z') and the reference unit vectors (x, y, z) the six numbers will be $[x' \cdot x, x' \cdot y, x' \cdot z, y' \cdot x, y' \cdot y, y' \cdot z]$ where "." is the scalar dot product (cosine of the angle between the unit vectors).

Notice that this corresponds to the first two rows of the rotation matrix that transforms from the global orientation to the local orientation. The third row can be recovered by using the fact that the basis vectors are orthonormal.

5 **Provenance**

The documentation of all transformations, analyses and interpretations of data is called data provenance. Maintaining this history allows for reproducible data. The Data Exchange format tracks provenance using the Provenance class. The index value attached to the process class denotes the execution order of the processes. The Process class uses references to other classes that describe the analysis in detail. The Provenance class describes all process steps that have been applied to the data.

Table 28: Provenance class members

Member	Туре	Example
$process_{-}N$	Process class	

process_N - A process applied to the data.

5.1 Process

The process class holds basic information about a process. It is a generic container for recording the status of a process, and maintaining references to detailed process information.

Table 29: Process class members

Member	Туре	Example
status	string	"SUCCESS"
reference	string	"/reconstruction_1"
message	string	"Full reconstruction."

status - Current process status. May be one of the following: QUEUED, RUNNING, FAILED, or SUCCESS.

reference - Full HDF5 path as text to a process description group. The process description group contains all metadata to perform or run the specific process.

message - A process specific message generated by the process. It may be a confirmation that the process was successful, or a detailed error message, for example.

Table 30: Process class examples

process_1		
	status	"SUCCESS"
	reference	"/gridftp"
	message	"Detector to cluster data transfer"
process_2		
	status	"SUCCESS"
	reference	"/reconstruction_1"
	message	"Full reconstruction."
process_3		
	status	"RUNNING"
	reference	"/gridftp"
	message	"cluster to user data transfer"

5.2 Process description

The process description group defined in the reference tag in each process steps contains all parameters, including input and output datasets to execute a specific process steps and it should be placed at the root of the HDF5 file.

5.3 APS 2-BM Process descriptions

For the APS 2-BM tomography system we define the following process descriptions:

5.3.1 Gridftp

The gridftp class contains all information and parameters required to transfer data using the APS 2-BM gridftp server.

Table 31: gridftp class members

Member	Туре	Example
input₋data	string	"/exchange_1"
output₋data	string	"/remote user cluster location"
credentials	string	"anonymous"

input_data - Full HDF5 path to input data as text.

output_data - Full HDF5 path to output data as text.

credentials - Account/credentials used for the data transfer.

5.3.2 Reconstruction

The Reconstruction class contains all information and parameters required to run a tomography reconstruction using the APS 2-BM cluster.

Table 32: Reconstruction class members.

Member	Туре	Example
input_data	string	"/exchange_1"
output₋data	string	"/exchange_2"
reconstruction_time	string	
number_of_nodes	integer	16
filter	string	"Parzen"
algorithm	Algorithm class	
rotation_center	float	1048.50
ring_removal	RingRemoval class	
processed_periods	float	1
processed_number_of_steps	integer	7
scaling_min	float	-0.00088
scaling_max	float	0.005
zero_padding	float	0.50

input_data - Full HDF5 path to input data as text.

output_data - Full HDF5 path to output data as text.

reconstruction_time - Total time (s) to reconstruct the full data set.

number_of_nodes - Number of nodes used.

filter - Filter type.

algorithm - Algorithm class describing reconstruction algorithm.

rotation_center - Center of rotation in pixels.

ring_removal - RingRemoval class describing ring removal algorithm.

processed_periods -

processed_number_of_steps -

scaling_min -

scaling_max -

zero_padding -

5.3.3 Algorithm

The Algorithm class contains information required to run a tomography reconstruction using the APS 2-BM cluster.

Table 33: Algorithm class members

Member	Туре	Example
type	string	Iterative
name	string	SART
version	string	1.0
output_dimensions	3 integers	
implementation	string	GPU
stop_condition	string	Iteration
iteration_max	integer	200
projection_threshold_type	float	
difference_threshold_percent	float	
difference_threshold_value	float	
regularization	string	Total Variation
regularization_parameter	float	
step_size	float	0.3
sampling_step_size	float	0.2

type -

name -

version -

output_dimensions - The output dimensions in z, y, x order.

implementation -

stop_condition - One of the following: Iteration, ProjectionThreshold, DifferenceThresholdPercent, DifferenceThresholdValue

iteration_max - Maximum number of iterations.

projection_threshold_type -

difference_threshold_percent -

difference_threshold_value -

regularization -

regularization_parameter - lambda/alpha value

step_size -

sampling_step_size -

RingRemoval 5.4

The RingRemoval class contains information required to run a tomography reconstruction using the APS 2-BM cluster.

Table 34: RingRemoval class members

Member	Туре	Example
enabled	integer	1
coefficient	float	1.0

enabled - 1 = enabled, 0 = disabledcoefficient -

Code examples

All the code examples as well as the resulting 2FXi files are available from https://confluence.aps.anl.gov/display/NX/.

6.1 Creating a minimal 2FXi file

Include code here

The resulting file should be equivalent to the one in Fig. 2.

6.2 Creating a minimal 2FXi file for tomography

Include code here

The resulting file should be equivalent to the one in Fig. 4.

6.3 Creating a typical 2FXi file for tomography

Include code here

The resulting file should be equivalent to the one in Fig. 5.

Appendix

Default units for 2FXi entries

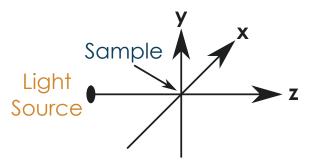
The default units for 2FXi entries follow the CXI entries definition, i.e. are SI based units (see table 35) unless the "units" attribute is specified. 2FXi prefers not to use "units" and use the default SI based units whenever possible.

Table 35: SI (and common derived) base units for different quantities

Quantity	Units	Abbreviation
length	meter	m
mass	kilogram	kg
time	second	S
electric current	ampere	Α
temperature	kelvin	K
amount of substance	mole	mol
luminous intensity	candela	cd
frequency	hertz	Hz
force	newton	N
pressure	pascal	Pa
energy	joule	J
power	watt	W
electric potential	volt	V
capacitance	farad	F
electric resistance	ohm	Ω
absorbed dose	gray	Gy
area	square meter	m^2
volume	cubic meter	m^3

A.1.1 Angles

Angles are always defined in degrees *not* in radians.


A.1.2 Dates

Dates are always specified according to the ISO 8601. This means for example "1996-07-31T21:15:22+0600". Note the "T" separating the data from the time and the "+0600" timezone specification.

A.2 Geometry

A.2.1 Coordinate System

The 2FXi uses the same CXI coordinate system. This is a right handed system with the z axis parallel to the X-ray beam, with the positive z direction pointing away from the light source, in the downstream direction. The y axis is vertical with the positive direction pointing up, while the x axis is horizontal completing the right handed system (see Fig. 9). The origin of the coordinate system is defined by the point where the X-ray beam meets the sample.

Figure 9: The coordinate system used by CXI. The intersection of the X-ray beam with the sample define the origin of the system. The z axis is parallel to the beam and points downstream.

A.2.2 The local coordinate system of objects

For many detectors their location and orientation is crucial to interpret results. Translations and rotations are used to define the absolute position of each object. But to be able to apply these transformations we need to know what is the origin of the local coordinate system of each object. Unless otherwise specified the origin should be assumed to be the geometrical center of the object in question. The default orientation of the object should have the longest axis of the object aligned with the x axis, the second longest with the y axis and the shortest with the z axis.